Tutorial—Five Quick Problems

Tutorials will use the **Standard User Mode** to highlight the simplicity in using this software. Advanced Users may want to use the **Power User Mode** and examples are shown at the end of each Tutorial.

All Tutorials are shown with the US unit system.

Problem 2

Let's extend Problem 1 by adding beam support and load information. Specifically, assume that the beam will be steel, 6 ft long, fixed at both ends, with a maximum concentrated load of 2000 lbf at the center. You want to determine the deflection and stress values.

Open the Roark's Formulas for Excel Explorer and select **Table A.1**, **Case 3** (hollow rectangular cross-section). Then select **Table 8.1**, **Case 1d** and add this to the previous case selection.

Click the Standard User Mode button to continue.

Once loaded into Excel the Worksheet looks as follows:

	A	В	C	D	E	Free Free	G	H
1	Roark's Form	mulas for Ex	cel					
2	Appendix: Pro	perties of a Pla	ne Area TABLE	A.1				
3	Table A.1 - Pro	perties of Secti	ons Pages 802	- 812				
4	Case: 3 Hollow	Rectangle						
5	Chapter Eight:	Beams; Flexu	re of Straight Ba	ars TABLES 8.1 - 8.13				
6	1. Concentrate	d Intermediate l	_oad					
7	Case: 1d Fixed	I, Fixed						
8	_					0		0
9	Но	llowrectangle		Left end fixed, right end fixed	Concentra	ted intermedia	ate load	
10		2 y ₂			Y	14	M	
11	1	1		N		a ——— '	^м в 🔪	
12	-	d.		- N	_			
14	d 1-	H +	1	- ў · · · · · · · · · · · · · · · · · ·		-		0
15			y			€ _A	R ₈	
16			i —	В — м	A			
17	_	2	•		<u>t</u>	1		
18	4	b			RA		1.1	
19				0		0		0
20								
21	Input	Value	Unit	Comment				
22	axis	1		Neutral Axis (1,2)				
23	t1b	1	in	Side b				
24	t1bi	0.75	in	Hollow Side bi				
25	t1d	2	in	Side d				
26	t1di	1.5	in	Hollow Side di				
27	matnum	17		Material number (see material table)				
28	L	72	in	Length of beam		1		
29	a	36 1000	in Ing	Load distance from left end				
30	VV V	1000	ioi in	Load Sample dictance, x, from left and				
32	^	JU	101					
32	Output	Value	Linit	Comment				
34	Δ	0.875	inA7	Area A				
35	t1v	1	in	Centroid to Extremity				
36	1	0.455729167	in^4	Area moment of inertia				
37	1%c	0.455729167	in^3	Elastic section modulus				
38	t1r	0.721687836	in	Radius of Gyration, r				
39	Z	0.578125	in^3	Plastic Section Modulus, Z				
40	SF	1.268571429		Shape Factor, SF				
41	t	2	in	Depth				
42	ĸ	0.26796875	in^4	Torsional Stiffness Constant, K				
43	Q 01	0.765625	in/3	Shear Stress Constant, Q				
44	moti	U.3828125	µп^5 М. 87 617"	Silver Stress Constant, Long Side, UT				
45	F	29000000	nei	Voung's Modulus				
40		23000000	lhf	Transverse shear at v				
48	M	9000	lhf-in	Bending moment at x				
49	theta	0	rad	Slope Angle at x				
50	Y	-0.147092808	in	Deflection at x				
51	sty	19748.57143	psi	Max fiber stress at extremity at location x				
52	RA	500	lbf	Vertical reaction at left end				
53	MA	-9000	lbf-in	Bending moment at left end				
54	thetaA	0	rad	Slope Angle at left end				
55	уА	0	in	Deflection at left end				
56	RB	500	lbf	Vertical reaction at right end				
57	MB	-9000	lbf-in	Bending moment at right end				
58	thetaB	0	rad	Slope angle at right end				
59	ув	0	In	Deflection at right end				
60								

Now, enter the cross section dimensions in the Worksheet. Simply move to the Value column of the relevant variable and enter the data.

1
1.5 in
1.3125 in
2.75 in
2 in

Note the revised Excel Worksheet.

5

Power User Mode Approach

The following series of problems uses the Power User Mode approach in the Roark's Formulas for Excel Explorer.

Problem 2

Let's extend Problem 1 by adding beam support and load information. Specifically, assume that the beam will be steel, 6 ft long, fixed at both ends, with a maximum concentrated load of 2000 lbf at the center. You want to determine the deflection and stress values.

Open the Roark's Formulas for Excel Explorer and select **Table A.1**, **Case 3** (hollow rectangular crosssection). Then select **Table 8.1**, **Case 1d** and add this to the previous case selection. Click the **Power User Mode** button.

This combines the cross section variables and formulas with the beam loading formulas and opens an Input form having the combined Variables, Tables and Plots tabs as shown below.

First, enter the cross section dimensions as done in Problem 1.

1
1.5 in
1.3125
2.75 in
2 in
6 ft (1.828 m)

Enter a length of 6 m and then change the unit from ft to m simply highlight the unit and select the appropriate unit.

Roark's Formulas for Excel supports unit conversions for a wide range of quantities used in the application.

					Variables
Sta	Input	Name	Output	Units	Comments
					Left end fixed, right end fixed
					Table 8.1: Case 1 - Roark's Formulas
					Concentrated Intermediate Load
		matnum			Material number (see material table)
		matl			Material description
	1.8288	L		m 🔻	Length of beam
		а		in	Load distance from left end
		W		lbf	Load
		E		psi	Young's Modulus
		I		in^4	Area moment of inertia, I
		z		in	Neutral axis to stress point, z
		х		in	Sample distance, x, from left end
		V		lbf	Transverse shear at x
		M		lbf-in	Bending moment at x
		theta		rad	Slope Angle at x

Enter the inputs for the remaining variables:

Load distance from left end	36 in
Load	2000 lbf
Young's Modulus	3E7 psi

Distance x is the location along the beam at which the shear, moment, slope, deflection, and stress will be calculated and reported. By default, the model automatically solves for the two ends. By entering a value for x, you also get a solution at the desired location.

If you don't remember the Young's Modulus for steel, you can check the Material Properties Table, which is automatically loaded with each case. You can look at the Material Properties Table by clicking the Tables Tab and selecting Materials.

The table appears as shown below.

3 Hollow Rectangle <table a.1<cross-sectio<="" th=""><th>n Properti</th><th>ies<roark's excel;1d="" fixed<="" for="" formulas="" th=""><th>, Fixed<case< th=""><th>1<table th="" x<=""></table></th></case<></th></roark's></th></table>	n Properti	ies <roark's excel;1d="" fixed<="" for="" formulas="" th=""><th>, Fixed<case< th=""><th>1<table th="" x<=""></table></th></case<></th></roark's>	, Fixed <case< th=""><th>1<table th="" x<=""></table></th></case<>	1 <table th="" x<=""></table>
Variables Tables Plots				1
Materials		Materials		
	matn	matl	G	E 🔺
			Shear	Young's
			Modulus	Modulus
		METALS		
	1	Aluminum - cast, pure	3700000	9000000
	2	Aluminum - cast, 220 T4	3550000	9500000 🦳
	3	Aluminum - wrought, 2014 T6	4000000	10600000
	4	Aluminum - wrought, 6061 T6	3750000	1E7
	5	Beryllium copper	7000000	19000000
	6	Brass - naval	5500000	15000000
	7	Bronze - Phosphor, A.S.T.M. B159	6500000	15000000
	8	Cast iron, gray, no. 20	6700000	14000000
	9	Cast iron, gray, no. 30	6700000	15200000
	10	Cast iron, gray, no. 40	6700000	18300000
	11	Cast iron, gray, no. 60	6700000	1900000
	12	Cast iron - malleable	8800000	2600000(🚽
	•	i- · ··		·
Variables Tables Plots		Solve	tup Layout	Cancel

The material number appears in the left column. This is the value you input for the variable matnum. The program will then retrieve the required values from the row of the table. We could use material number 17 for steel in this example.

Click the Solve button and the results are shown.

					Variables
Sta	Input	Name	Output	Units	Comments
					Left end fixed, right end fixed
					Table 8.1: Case 1 - Roark's Formulas
					Concentrated Intermediate Load
		matnum			Material number (see material table)
		matl			Material description
	1.8288	L		m	Length of beam
	36	а		in	Load distance from left end
	2000	W		lbf	Load
	3E7	E		psi	Young's Modulus
		I	1.8979	in^4	Area moment of inertia, I
		z	'	in	Neutral axis to stress point, z
	36	х		in	Sample distance, x, from left end
		V	1000	lbf	Transverse shear at x
		M	18000	lbf-in	Bending moment at x
		theta	0	rad	Slope Angle at x

Visit www.uts.com and www.roarksformulas.com

Let's change the beam material from steel to aluminum. Select the Tables tab and view the Materials Table again. Notice that materials 1-4 are various types of aluminum. Use number 4. Select the Variables tab and enter 4 as an input for the variable named matnum.

Blank the current value for the Young's Modulus E.

Solve and view the results.

					Variables
Sta	Input	Name	Output	Units	Comments
					Left end fixed, right end fixed
					Table 8.1: Case 1 - Roark's Formulas
					Concentrated Intermediate Load
	4	matnum			Material number (see material table)
		matl	"Alumin		Material description
	1.8288	L		m	Length of beam
	36	а		in	Load distance from left end
	2000	W		lbf	Load
		E	1E7	psi	Young's Modulus
		I	1.8979	in^4	Area moment of inertia, I
		z	'	in	Neutral axis to stress point, z
	36	x		in	Sample distance, x, from left end
		V	1000	lbf	Transverse shear at x
		M	18000	lbf-in	Bending moment at x
		theta	0	rad	Slope Angle at x

The change in materials has significantly increased the deflection at x.

Now select Setup Layout and load the model in the Excel Worksheet.

